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ABSTRACT

An outline is given of an analysis that leads to an exact solution

for the problem of steady-state diffusion through a finite thick pore
into an infinite region surrounding the mouth of the pore. From this
exact formula a simple expression for the flux is derived. This ex-
pression approximates the flux with a relative error of less than 3.42%
independently of the ratio /’a where [ 1is the length of the pore
and a 1its radius. If desired more accurate expressions for the flux

can be obtained from the exact solution.



1. Introduction. Diffusion in biological systems is often characterized
by vhat, fram a mathemstical point of view, are difficult gsometries
(Rasheveky, 1960, Section I). In such geometries although the methods
of finite differences may be numerically useful, it is often difficult
wvith tbhese procedures to obtain rigorous and realistic error estimates
since even simple irregularities of the gecmetry (e.g. & right amgle im
a boundary surface) often imply large absolute values of the higher
derivatives, and practically all rigorous error estimates depemd on
estimates of these higher order derivatives (Forsythe,1958). Thus there
is & distinct need for exact solutioms in such a form that biologically
useful data can be camputed with useful and rigorous error estimates.
Although these exact solutions will be applicable to only & limited
number of situstions, they serve as indispensable benchmarks for gauging
the credib.lity of approximate procedures. Compare Stoker (1962) vhere
e similar situation 1s described in the physical sciences.

With this in mind the vriter (Kelmam,1963a,b) has begun the task
of widening the class of three-dimensional geometries in which explicit
solutions are available fox laplace's equation--the equation governiag
steady-state diffusions. These solutions are being developed im such
& way that they yleld formulas for the flux of solute vith rigorous amd
realistic eatimates of the relative error. The emphasis on relative
error.is especially important in blologicel applications since models are
often constwucted for distinguishing "passiwe” from "active" treasport
(see, e.g., Cafky (1963), Bogben (1960)).
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Because of the mathematical complexity of these developments it
seems best that they be presented fully im the mathematical literature
and that appropriate resumfs be givem im the biological literature.
This paper is the first such resunf. The reader imterested oaly im the

formulas derived for the flux cen proceed directly toQ 3.

2. Bsckground and method of solutiom. There ia a class of steady-state

diffusion problems of biological interest (Patlack,1959) vhich is charsc-
terized by diffusionsal flow from s region; say on the left, through a
right cylinder (or cylinders), called pore(s), into a large surrousdimg
region on the right, called the reservoir, Gray, Mathews and MacRobert
(1931) have given am exact solution for a zero thick pore with an im-
finite region above it amd have givem an approximate analysis for a
zero thick pore centered on the face of a cylinder where the redius of
the cylinder is much larger tham the height of the cylinder which im
twn is much larger tham the redius of the pors. Smythe (1953a,d),
Cooke and Tranter (1959), Collims (196R), and Willisms (1962) bave per-
formed saalyses for a gero thick pore cemtered oa the face of a cylimder
of imfimite height. Cooke (1956,1958)amd Collims (1960e,b) amd Willisms
(1962) bave studied a sero thick pore opeaing into a cylimder of imfimite
radius and fimite haight. Also in the above mentioned pepers are asslyses
appliceble to diffusioa from a spherical cap into a cylimdrical regiom
(cf. Collins (1962), Knight (1936), Smythe (1960)).

Our extension (Kelman,1963a,b) consists of an exact solution for a

pore of finite thickness with an iafiaite region above the pore--a useful
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model for example for water loss through a plant pore. The writer
(Xelman,1963c) was, however, origimally led to study this problem by
considering the time depemdent, longitudimsl diffusion of imulim through
& mephron.

Iet 1, X, and 6 demote cylindrical coordinates, a the redius of
the pore, £ its length, 00 the concentratiom at the base of the pore,
F the flux (i.e. the amount of solute emtering the reservoir per wmit
of tims), amd u(r,x) the concentration of solute. The axis of the pore
(see Fig.1l) coimcides with the x-axis. Ome of its faces is centered at
the origin and the other face at r =0 and X = ~f. The lateral wlls
of the pore and the wall of the reservoir (i.e. the area r >a amd
x = 0) are assumed to be impervious to the solute. Them we seek u am

F from the system (1) of equations ( n demotes outward drawva mormal):

?'Q;U ro'v + 9Y-0 O<&LhrF4d agnd -LexsO (la)
w TN T or ’{P—>0 and x >0 ’
utry = G, | x=0 and 0 £r<d Clb)
2
ueRy) =0 , X>0 und F+x=o0 (Le)

=0 gnd x>-4
o =0, 7 r=a and -fL¢x<o - )

N
rya dand x=0



.

Equation (1a) 1s Isplace's equatiom im cylimdrical coordinates for the
region under considerstion. Equatiom (1b) gives the boundary comdition
at the left face of the pore. Equation (1c) expresses the fact that
the concentration iL finite at the far reaches of the reservoir. If ome
vishediﬁtohivaavpmothcrthnb, S8y G) &t rtx = w, ome would
make the change of dependent varisble v(r,x) = Gy+u(r,x). In the case
of water loss through a plant pore the value u =0 at mmﬁmu
realized by placiag aahydrous sulfuric scid in the chamber iam vhich the
plant leaf is located. Equatiom (1d) is the .tu-tiéu expressioa
that: (1) the line r =0 amd x> -7 is the axis of symsetry amd
hence there is mo flovw across it; (i1) r=a and -21<x < O is the
impervious lateral surface of the pore; (111) r> & and x =0 1is
the impervious surface surrounding the mouth of tha pore..

We now briefly describe the method of solution. BSince Bessel fumctioms
are used in solving laplace's equation im cylindrical regions (Carslaw
and Jaeger, 1959) one formally expands u(r,x) on 0 Erga amd x=0

as follows
e=
VL) = W3 + 2 o J; @a /) V3 (2)
n=s ‘J; wh )
vhere J, 1s & Bessel function of the first kind, q, 1is the ath positive

root of Jl(r) and vhere the coefficiemts 4j,: B = 0,1,...} are uaknowns.
Technically, we regard ) = {Jn as an element in the Hilbert space of

square summable column vectors (Riesz and Nagy,1952). Om the basis of
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equation (2) one can write down a formal solution, say ut ,to bold

inside the pore (Carslaw and Jaeger,1959,v.218).

B Ll b §) )R

Jn Sinhant8+x)/a V& Jo Lol M)
Nn=, SH’\h amac/a. JD u”)
l =

0 it is known that the surfaces of equiooncentration

+
Now 1if

are oblate spheroids (Tranter,1959,p.100). Therefore we introduce
oblate spheroidal coordinates ( 1, ¢ ) in the reservoir. These are

given by (Hobson,1955,p.421)
r =cosh q sir ¢ , x=28inh n cos ¢

Then separating variables in the reservoir leads to Legendre's differ-
ential equation (Hobson,1955) with y l-r2 as the independent variable.

This suggests expanding u(r,0) in even order lLegendre polynomials

Pan("{:?- ) as follows
o4 /s
vir,0) = 2 Pr CHNTY Bn (fi=+%)
n=0

vDere T = {p :n= 0,1,...} is unknown. Then a formal solution,

say \Jp , can be vritten for the reservoir in terms of p (Hobson,1955, 252)

Lo .
R, )= 2 PmUinH)//& Ean(CosP) ap CUsinh L)
h=0 an (o)

vhere Q'zn is a legendre function of the second kind.
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These twe solutions are matched on the interface in the following
way .
We set

, r‘:sLnP (3)

=0

Both sides of (3) are then multiplied by (1m+1)it Pen(cos ¢ ) s8in o

Y, n/ s G,
Xz 0

and integrated with respect to ¢ over O § ¢ £ x /2. Using the

orthogunality property of the legendre polynomials (Hobson,1955), i.e.

n/3 . _ _
mmSD R Ceasgd b (eaprsing dg= |, n=m

we obtain from (3) am expression for P, in terms of j. To obtain a

second system of equations we set

oup| = ’bug , F=sen ¢ ()
0% %20 fyx- n=0

Both sides of (4) are then multiplied by

ﬁ Jo( ap sin ¢ ) sin ¢ cos ¢ /Jo( an)

and integrated with respect to ¢ over 0g ¢ & x/2. Using the

orthogonality property (Carslav and Jaeger,1959)

J 5‘(.0( nScnd) \T(d smp)sm4) co.wd«fa',n:m
=O)n#m

J;(-(,,) J‘ (L)
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we obtain from (k) an expression for 3‘ in terms of p. From these
two systems of equations between J and p one is able to obtain an
explicit and remarkekly useful formula for J (KcIman,1963s,b). Knowing

J one can then determine p and .

3. Flux. From the solutiom u found above the following exact expression
can be obtained for the amount of solute entering the reservoir per umit

of time in terms of the dimensionless pu-lmeur A= 1 /s (Xelman,1963a).

F= ‘mGa Z s
EZ l+ﬁ\

Cb+) K .
2 Jom mn, hﬂ'\\z"'d J ) W A3

Ve ht";)nt" n'na
b 3) )’\ . eo

(5)

ka‘ 0) . h)=0J5"'
J Wil e

: _i S‘n - X
th= T2 (rr“'w‘n“x ) 0<,‘,"J’cx..) ) mEL T,

119
dgn= - a@% [s&n(o(lm.,) + Sin cd.-a,.)'L'

n-(“hdh) A;@ )J(S*h) %-ﬁo(n o(b-ol,,
i1l 2 kin; RNzL !y
don = (22 ) don , h=o,l, v,
A
-1 "
QXL) &O(k
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By estimating the sum in (5) the following approximation amd error

estimate is obtained where i"v denotes an approximation to ¥ amd aF - V.r

(Kelman,1963a).
F= 4K&a [|_. 0.0999 | | 62\ coo, (&
| + 22 |+ %A
T mr
F 0,715 tA

Thus F is approximated vwith a relative of less than 5% uniformly
in A (0K A < =) vhile for the range A > 2.82 the relative error is
less than 1%. In the renge 0§ A < x~1 a more accurate approximatioa

is (Kelman,1963s)

%
F= 4KGea[,- 08RBaE | ogds/ir (7)
[+ A I+ ¢ |

b T

vhere

2
§7= _0,0566 tanh%d | poR3tannoyd + LN
I+ 1I1SEtan h oyl I+ K079 tanhol,

and vhere

TA)= 90,0905 , thmsA s

= A[0306 In( 423md )+ Q0840 ])
O&)e9/m.
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In this case

2
l(ﬂ4 0. 66&5 3 05/\-‘—’/”:(3)
F = 0n%S-1338°+ A

Nov the right hand side of (8) decreases to O as A goes for 1/x

to O (Kelman,1963a). For N\ =1/x 1its vaiue is 0.0341. Thus (6)
combined with (7) gives an approximation to F such that the relative
error is less than 3.41% uniformly in A (OgA < ») and moreover this
erroxr tends to©o O as A 0 and as A 9 w.

These approximations seem adequate for most biological applications
If, however, the meed arose for formulas of greater sccuracy one could
achieve this by computing the terms do(()k"'). This 1s comperatively
easy to dc because of the availability of asymptotic formulas for the
quantities entering the sum giving F. Each pair of terms dogak"')
and dogak*lf') thus computed can be shown to reduce the relative error
by about 0.407 (Xelman,1963a).

Applying Patlak's (1959) variant of landahl's (1953) method to the

system (1) gives the approximation
[a

F= 4k&3 |

I+.#.

i1.e. the first term im the series in (5). }

(Tt can be shown that for this spproximation (Kelman,1963a)
8F o _0.205~ , /r £A Lo
F T Ous A

3
0,788 1336+

, 0 eAS T




«~10-

and that the relative error is less than 6.82% uniformly ia A . This
particular approximation was used by Erown and Escombe (1900) im their
study of water loss through a plant pore.
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